Paylasim beldesine hoşgeldiniz...
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Paylasim beldesine hoşgeldiniz...

Paylasim beldesi
 
AnasayfaLatest imagesAramaKayıt OlGiriş yap

 

 Polinomlar [ Konu Anlatımı ]

Aşağa gitmek 
YazarMesaj
Flucke
Admin
Admin
Flucke


Erkek
Mesaj Sayısı : 1278
Yaş : 30
Nerden : Mersin
Rep :
Polinomlar [ Konu Anlatımı ] Left_bar_bleue526 / 100526 / 100Polinomlar [ Konu Anlatımı ] Right_bar_bleue

Başarı :
Polinomlar [ Konu Anlatımı ] Left_bar_bleue76 / 10076 / 100Polinomlar [ Konu Anlatımı ] Right_bar_bleue

Aktiflik :
Polinomlar [ Konu Anlatımı ] Left_bar_bleue95 / 10095 / 100Polinomlar [ Konu Anlatımı ] Right_bar_bleue

Teşekkür :
Polinomlar [ Konu Anlatımı ] Left_bar_bleue98 / 10098 / 100Polinomlar [ Konu Anlatımı ] Right_bar_bleue

Tuttugunuz Takım : Polinomlar [ Konu Anlatımı ] 1450
Web siteniz... : http://kral.forumclan.net
Kayıt tarihi : 08/08/08

Polinomlar [ Konu Anlatımı ] Empty
MesajKonu: Polinomlar [ Konu Anlatımı ]   Polinomlar [ Konu Anlatımı ] EmptyC.tesi Eyl. 06, 2008 11:40 am

n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.



B. TEMEL KAVRAMLAR

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

olmak üzere,

Ü a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.

Ü a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir.

Ü Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir.

Ü Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve

der [p(x)] ile gösterilir.

Ü Değişkene bağlı olmayan terime polinomun sabit terimi denir.

Ü a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Ü a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.


Her polinom bir fonksiyondur. Fakat her fonksiyon polinom olmayabilir.

Buna göre, fonksiyonlarda yapılan işlemler polinomlarda da yapılır.





C. ÇOK DEĞİŞKENLİ POLİNOMLAR

P(x, y) = 3xy2 – 2x2y – x + 1

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.



D. POLİNOMLARDA EŞİTLİK

Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.



Ü P(x) polinomunun katsayıları toplamı P(1) dir.

Ü P(x) polinomunda sabit terim P(0) dır.




Herhangi bir polinomda; kat sayılar toplamı bulunurken o polinomda değişkenler yerine 1 yazılır. Sabit terim bulunurken o polinomda değişkenler yerine 0 (sıfır) yazılır.

P(ax + b) polinomunun; kat sayıları toplamı

P(a + b) ve sabit terimi P(b) dir.





Ü P(x) polinomunun;

Çift dereceli terimlerinin kat sayıları toplamı:Polinomlar [ Konu Anlatımı ] Poli_kesir01

Tek dereceli terimlerinin kat sayıları toplamı:Polinomlar [ Konu Anlatımı ] Poli_kesir02

E. POLİNOMLARDA İŞLEMLER

1. Toplama ve Çıkarma

P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...

Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...

olmak üzere,



P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...

P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...

olur.



2. Çarpma

İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.



3. Bölme

der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,

Polinomlar [ Konu Anlatımı ] Poli_sekil01

P(x) : Bölünen polinom

Q(x) : Bölen polinom

B(x) : Bölüm polinom

K(x) : Kalan polinomdur.



Ü P(x) = Q(x) . B(x) + K(x)

Ü der [K(x)] < der [Q(x)]

Ü K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.

Ü der [P(x)] = der [Q(x)] + der [B(x)]



Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.

Bunun için;

1) Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.

2) Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.

3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.

4) Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.

5) Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.



F. KALAN POLİNOMUN BULUNMASI

Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.



1. Bölen Birinci Dereceden İse

Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerinePolinomlar [ Konu Anlatımı ] Poli_kesir03

P(x) in x – b ile bölümünden kalan P(b) dir.

• P(mx + n) nin ax + b ile bölümünden kalan

Polinomlar [ Konu Anlatımı ] Poli_kesir04

Bölen Çarpanlara Ayrılıyorsa

Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.

P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,

P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.

P(b) = mb + n ... (1)

P(c) = mc + n ... (2)

(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.


Bölen polinomun derecesi n ise kalan polinomun derecesi en fazla (n – 1) dir.





3. Bölen Çarpanlarına Ayrılamıyorsa

Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.

1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.

2) Bulunan ifade bölünen polinomda yazılır.

• P(x) polinomunun ax2 + bx + c ile bölümünden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.



4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+, n > 1)

Polinomlar [ Konu Anlatımı ] Poli_kesir06


......................

......................

......................

Polinomlar [ Konu Anlatımı ] Poli_kesir07

P'(x) : P(x) polinomunun 1. türevidir.)




P(x) = axn + bxm + d ise,

Pı(x) = a . nxn–1 + b . mxm–1 + 0

Pıı(x) = a . n . (n – 1)xn–2 + b . m(m –1).xm–2 dir.






P(x) polinomunun (x – a) ile bölümünden elde edilen bölüm Q(x) ve kalan k1, Q(x) polinomunun (x – b) ile bölümünden kalan k2 ise,

P(x) in (x – a) (x – b) ile bölümünden kalan

K(x) = (x – a) k2 + k1 olur.





G. BASİT KESİRLERE AYIRMA

a, b, c, d, e, f A, B birer reel (gerçel) sayı olmak üzere,



eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.

Polinomlar [ Konu Anlatımı ] Poli_kesir09
eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.
Polinomlar [ Konu Anlatımı ] Poli_kesir09
Bulunan bu değer eşitliğin sol yanında A nın paydası atılarak elde edilenPolinomlar [ Konu Anlatımı ] Poli_kesir10de yazılır.

Aynı işlemler B için de yapılır. Buna göre,

Polinomlar [ Konu Anlatımı ] Poli_kesir11

. DERECE İLE İLGİLİ İŞLEMLER

m > n olmak üzere,

der[P(x)] = m

der[Q(x)] = n olsun.

Buna göre,

1) der[P(x) ± Q(x)] = m dir.

2) der[P(x) . Q(x)] = m + n dir.

3) P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) ise, der[B(x)] = m – n dir.

4) k Î N+ için der[Pk(x)] = k . m dir.

5) der[P(kx)] = m, k ¹ 0 dır.[/B]
Sayfa başına dön Aşağa gitmek
https://paylasim.ace.st
 
Polinomlar [ Konu Anlatımı ]
Sayfa başına dön 
1 sayfadaki 1 sayfası
 Similar topics
-

Bu forumun müsaadesi var:Bu forumdaki mesajlara cevap veremezsiniz
Paylasim beldesine hoşgeldiniz... :: Ödevler Ve Dersler :: Matematik&Geotmetri-
Buraya geçin: